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1 Introduction

1.1 Purpose and Goal

This document provides an overview of Table Tennis Agent application, de-
veloped by Team Malong for the course CSCI 527:Applied Machine Learning
for Games. The objective of our project is to understand how we can use
machine learning algorithms to train dual AI agents to play a game of table
tennis. Through this process we would like to develop algorithm that will
enable each agent to play table tennis as per the rules. For this purpose, we
use an actor critic reinforcement learning approach in order to train each
agent to maximize its performance. For further research, we want to explore
the realm of multi-agent learning, developing fully competitive multi-agent
RL methods that could well perform in table tennis.

We want to achieve the following goals.

1. Build a table tennis environment in Unity with the following engineer-
ing requirements.

(a) Neat graphics and visual effects of a 3D table tennis game.

(b) Both human and AI are available to play the game.

(c) have feed-backs like scoreboard, showing winner or loser, etc

2. Build table tennis agent that could outperform human and gain highly
competitive performance.

(a) Fully utilize the unity-ml toolkit and train with popular RL meth-
ods like PPO, SAC, DQN

(b) Research on multi-agent RL methods.

The following is a schedule for our project development.

Milestone Expected Completion Date

Study reinforcement learning basics Week 1-5
Research unity ml-agent Week 4-6

Research self defined models Week 6-7
Train basic RL agent using PPO, SAC, etc Week 7-9

Improve RL agent with other ml-agent models(DQN etc) Week 9-11
Deploy MARL methods to game Week 11-13

Train MARl agents and compare it with RL agents week 14-15
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1.2 Background and Overview

1.2.1 Background

Table Tennis, known as Ping-Pong, is a popular sport in which two or four
players hit a lightweight ball on a hard table divided by a net[1]. There has
been many attempts to use robots to play table tennis in real-world. But
many of those research focus more on perception, such as tracing the trajec-
tories of the ball and predicting its position, transferring the learned agents
in simulation environment to real-world setting. They could not compete
against human players at any level, either dynamically or strategically. On
the other hand, there are also plenty of table tennis games available on vir-
tual environment, like PC, console and mobile devices. However, they are
mostly platforms for two human players play against each other, while the
provided AI are mostly rule-based. Our table tennis agents aim to achieve
high performance under virtual environment, so that learning the strategies
are more important to us compared with many prior works on table ten-
nis robots. As a result, we want our environment to be not only neat and
clean, but also to consider physical properties like spinning and collision
coefficients.

1.2.2 Design Overview

The System Overview diagram below is a visual representation of the un-
derlying game model and training architecture. Our project utilizes the
Unity 3D game engine to render our table tennis environment and perfmor
self-play training with the provided ML-Agent toolkit. Training outputs are
provided by PyTorch and visualized in tensorboard. systems
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Figure 1: Software Overview Diagram
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2 Prior Works

2.1 Reinforcement Learning

Reinforcement learning is a type of machine learning that uses AI systems
to follow a policy in order to learn an objective and there by maximize the
cumulative reward [2]. Here, an AI system starts learning step by step by
trial and error approach. For every correct action it performs it is given
a reward and for any subsequent mistake it receives a penalty. Using this
feedback mechanism of reward and penalty reinforcement learning learns
well in the environment around it[3]. With the development of deep learn-
ing, neural networks empower RL with unprecedented abilities in field of
Go[4], Atari[5], StarCraft[6], Robotics[7]. A major family of RL algorithms
are policy optimization, where they represent a policy as πθ(a‖s). The pa-
rameters θ are optimized by gradient decent of objectives, often involving
learning value functions at the same time. Some representative algorithms
are actor-critic algorithm[8], which is temporal difference version of policy
gradient, A2C[9], which directly performs gradient ascent in asynchronous
manner, and PPO[10], which indirectly maximize a surrogate objective func-
tion. Another Family is based no action value function, called Q-Learning,
first raised by Watkins in 1992[11].

2.2 Table Tennis Robots

Attempts to use robots to play table tennis could be traced back to the
80s. Since Anderson[12] built a real-world vision system which subjectively
evaluates and improves its motion plan as the data arrives, many table tennis
robot systems were built[13], [14],[15],[16],[17],[18].

As the development of deep learning, especially reinforcement learning,
training a robot to play table tennis in real world has been made possi-
ble. Lately, Wenbo et al.[19] demonstrate a model-free approach mixed of
evolutionary search and CNN-based policy architectures. Jonas et al.[20]
shows a modified DDPG[21] could increase sample efficiency in table tennis.
Büchler et al., combines step-based reinforcement learning with pneumatic
artificial muscles, and achieved great performance using a hybrid sim and
real training process. For further learning, Matsushima summarizes the
many learning approaches in robotic table tennis[22].

2.3 multi-Agent learning

Generally, in gaming, it often involves the participation of more than one
single agent, which fall into the real of multi-agent RL(MARL). As the
previous papers mostly try to solve table-tennis training a single agent, we
want to capture the competitive nature of a sport, thus training a pair of
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agent against each other. MARL algorithms are widely known to be sample-
inefficient and millions of interactions are needed. For the game of table
tennis, the interaction between the agent and the environment is relatively
simple compared with games like starcraft. Hence, we would focus more on
the model-free setting, where the policies are learned without direct access
to the environment.

Compared with single-agent RL, MARL suffers from several challenges.
As summarized by [23], MARL does not have unique learning gols and
whether convergence of equilibrium point is the alpha performance crite-
rion for MARL algorithm analysis is controversial. Some researchers found
value-based MARL algorithms fail to converge to stationary Nash equilib-
rium point for general-sum Markov games [24]. Another major issue is the
non-stationary setting as multiple agents could simultaneously interact with
the environment and each other. This could bring challenge to value esti-
mation as well as policy optimization during training. Scalability is a issue
coming along with non-stationary, as the joint action space is exponentially
increasing. Even in a dual agent setting as table tennis, the sample efficiency
would still be a major bottleneck.

MARL has many information structures(who knows what at the training
and execution) [23]. For the dual agent setting of table tennis, the straight
forward way is treat other agent as part of the environment, which is called
Independent Learning(IL). But IL face the problem of non-stationary dy-
namic, which harms the performance of policies. Some work try to stabilize
the learning process[25], [26]. Others try to build communication protocols
between agents [27],[28]. Another major MARL learning diagram is Cen-
tralized Training and Decentralized Execution (CTDE). One Representative
CTDE method is MADDPG[29], a multi-agent version actor-critic. Each
agent maintains its own critic Qi, which estimates the joint value function
and uses the critic to update its decentralized policy.

MARL consists of three groups, fully cooperative, fully competitive and
mixed of two. Though Table tennis is considered to be competitive game,
we would also try some mixed methods since table-tennis is not a typical
zero-sum game, where the reward for one player is exactly the loss of the
other.
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3 Methods

3.1 Preliminaries

The Table Tennis Game could be described as a Markov Process, and is a
Markov Game[30].

Markov Decision Process(MDP). An MDP is defined as

< S,A, T,R, ρ, λ >

where S a set of states, A a set of actions, T : S × A → P (S) a stochastic
transition function, R : S × A→ R a reward function, λ ∈ [0, 1) a discount
factor. The agent(table tennis player) interacts with the ball by performing
its policy π : S → P (A). The agents learn this policy to maximize the
expected cumulative discounted reward:

J(π) = Eρ,π,T

∞∑
t=0

rtλ
t

where rt = R(st, at), s0 ∼ ρ0(s0), at ∼ π(st), st+1 ∼ T (|̇st, at)

Markov Game(MG). An MG is an extension of MDP and is defined as

< S,N, {Ai}Ni=1, {Ri}Ni=1, {Oi}Ni=1, ρ, λ, Z >

where the action sets now contain N agents, namely, A1 · · ·AN , state transi-
tion function T : S×A1 · · ·AN → P (S), reward function R : S×A1 · · ·AN →
R. For partially observable Markov games, each agent i receives local ob-
servation oi : Z(S, i) → Oi and interacts with environment with its policy
πi : Oi → P (Ai). The expected cumulative discount reward now turns into

J i(πi) = Eρ,π1,···,πN ,T

∞∑
t=0

ritλ
t

where rit = Ri(st, a
1
t , · · · , aNt ). Recently, Reinforcement learning has become

efficient in solving Markov Games, we would discuss methods like PPO, SAC
and DQN in later sections.

3.2 Table Tennis Environment

In this section, we would discuss the tools we are using and the software we
are building for the Table Tennis game environment.
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3.2.1 Development Environment

1. Unity 3D: 2020.3.20 Unity is a cross-platform game engine devel-
oped by Unity Technologies. The game engine can be used to develop
interactive 3D, 2D, as well as interactive simulations and other expe-
riences. Unity version 2020.3.20 is utilized for the environment setup.

2. Unity Machine Learning Agents Toolkit

The Unity Machine Learning Agents Toolkit (ML-Agents)[31] is an
open-source project that enables games and simulations to serve as
environments for training intelligent agents. They provide state-of-
the-art algorithms which can be used to train intelligent agents to
play different 3D and 2D games. The ML agents package provides
an option to convert a Unity scene into a learning environment where
character behaviors can be trained using machine learning algorithms.

3. Pytorch PyTorch is an open-source machine learning library based
on the Torch library, used for applications such as computer vision and
natural language processing[32].

4. Python

5. Tensorboard It is a visualization toolkit that provides visualization
and tools for machine learning experimentation. It helps to track and
visualizing metrics like loss and accuracy. Tensorflow.dev provides an
easy way to share ML experimentation results.

3.2.2 Functionality Design

Our project aimed to create an environment and ML agents, to enable them
to play a game of table tennis. For this purpose, we found out that Unity
provides a comprehensive environment where game objects can be created
and modeled as per user requirements. Also, game objects can be used as
ML agents and can be trained using Proximal Policy Optimization and Soft
Actor-Critic model provided by Unity. So we selected the Unity platform as
the environment.

Our environment contains a Table Tennis bat with the ability to assign
different unity materials to different sections of the bat for customizability.
The sections include Bat forehand face, Bat backhand face, Bat center, and
the Bat handle. The second model in this pack is the table tennis table
which can have different unity materials assigned to it for customizability.
The sections include Tabletop, Table Legs, Net frame.

1. Vector Observations: From the environment, we are collecting the
positions of bat A, bat B, and the ball. Also, we are collecting the
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velocity of bat A, bat B, and the ball. We have used these observations
to train the model using different Reinforcement learning algorithms.

2. Actions: We have designed the environment in a way where the bats
can move along X and Y axes and can rotate along X axes. Our goal
is also to use the Z axes in the following weeks. The bats can also be
moved using the ’right’, ’left’ keys.

3. Reward Policy: We have designed our reward policy in such a way
that if a player commits a mistake or makes a foul move the oppo-
nent player gets the reward for it. The following are the foul moves
implemented for our project:

• Player hitting the ball to the net.

• Player hitting the ball over the boundary.

• Ball bouncing more than once on the same side of the court.

For implementing the reward policy we are keeping track of the pa-
rameters given below:

• Last Hit Agent : The agent who hit the ball previously before
coming to the current player.

• Last Collided With : This keeps track of the last surface the ball
collided with. Here the surface refers to the court of player A,
court of player B, Net, etc.

• Next Agent Turn: This keeps the track of the next agent who has
to hit the ball to continue the game.

Using the above parameters we are rewarding the agents.

The following figure shows the environment we have built for now.

3.2.3 Software Overview:

To meet the above design requirements, our software consists of four classes:

1. Game Controller Class: This is the main controller class that is inter-
linked to all other classes. It has the following functionalities:

• agentScores(): This method is used for rewarding the agents.

• episodeReset(): It is used to reset the episode for every foul move.

• matchReset(): It is used to reset the match.

• ballHitsAgent(), ballHitsFloor(), ballHitsBoundary(), agentHit-
sNet(), ballHitReward(): These methods are used to handle the
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Figure 2: Table Tennis Environment

reward for the agent depending on the foul moves described for
the game.

2. Ball Class: This class refers to the functionalities used for the ball.

• onCollisionEnter(): This function handles the different nuances
when the ball collides with different surfaces. For example, when
the ball collides with bat A we are checking the parameter status
of the lastHitAgent, lastCollidedWith and we are rewarding the
agent as per the rules of table tennis.

• reset(),resetParameter(): This functionality handles resetting the
ball positions for every episode.

3. TTAgent Class: This class involves all the functionalities required for
the agent.

• CollectObservations(): It is used for collecting the vector obser-
vations for the bats and the ball. The velocity observations of
the bats and the ball are also collected.

• Heuristic(): This functionality is used to assign the movement to
the bat along ’x’ and ’y’ axis. The bat can be moved along the
horizontal axis using the right and left keys. It can be moved in
the vertical direction using the upward and downward keys. The
racket can be made to jump using the ’X’ key.
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Figure 3: Software Workflow Diagram

• OnActionReceived: This executes the actions by moving the game
objects in the vector space.

• resetRacket: It is used to reset the racket position.

• resetScore: It is used to reset the score for the agents.

4. Score Controller Class: This class handles the scoring of the agents.
The game is played to 11 points and the match is run for 5 games
with winning agent being the one who wins maximum games out of 5.
The class resets the episode and score values when the game ends and
resets the match after 5 games.

3.3 Modeling and Training

We begin with popular RL methods including PPO[10], SAC[33], DQN[34],
DDPG[34]. We also begin training MARL methods like MultiAgent Posthu-
mous Credit Assignment(MA-POCA)[31].
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3.3.1 PPO

1. Model description: Proximal Policy Optimization(PPO) is an on-policy
based reinforcement learning algorithm. This algorithm was intro-
duced by the OpenAI team in the year 2017 [10] and quickly became
one of the most popular RL methods surpassing the Deep-Q learning
method. PPO is scalable, data efficient, and successful on a variety of
problems without hyperparameter tuning.

PPO is an algorithm that attains the data efficiency and reliable per-
formance of trust region policy optimization (TRPO), while using only
first-order optimization.It involves collecting a small batch of experi-
ences interacting with the environment and using that batch to update
its decision-making policy. Once the policy is updated with this batch,
the experiences are thrown away and a newer batch is collected with
the newly updated policy. This is the reason it is an “on-policy learn-
ing” approach where the experience samples collected are only useful
for updating the current policy once.

PPO improves stability of the learning by mainly 2 techniques:

• Clipped Surrogate Objective: The Clipped Surrogate Objective
is a drop-in replacement for the policy gradient objective that is
designed to improve training stability by limiting the change you
make to your policy at each step.

• Multiple epochs for policy updating : Unlike vanilla policy gra-
dient methods, and because of the Clipped Surrogate Objective
function, PPO allows user to run multiple epochs of gradient as-
cent on your samples without causing destructively large policy
updates. This allows to squeeze more out of your data and reduce
sample inefficiency.

Figure 4: Proximal Policy Optimization Algorithm[10]
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Buffer Size Learn Rt Epochs Learn Sch Layers Max Steps Final ELO

2048000 0.0003 3 constant 3 370000 1202

2048000 0.0003 3 constant 2 1.6M 1191

2048000 0.001 3 constant 2 1.93M 1208

20480 0.03 3 constant 2 730000 1203

20480 0.01 3 constant 2 2.23M 1190

20480 0.01 3 constant 3 2.19M 1170

20480 0.01 500 linear 3 20000 1193

20480 0.01 10 linear 3 1.2M 1189

20480 0.01 1000 linear 3 100000 1195

20480 0.01 100 linear 3 1M 1205

Table 1: PPO Hyper parameter Combination

2. Training:

(a) The training is carried out by setting the behavior type of agents
to ”Default” in Unity so that no external/human interaction is
required to play the game. We used the mlagents-learn package
to execute the configuration file which contains the hyper param-
eters specific to each model. Each time a configuration file is
called a new model is trained and gets saved in the local sys-
tem. Later, the trained model can be embedded into Unity as
the model type in order to observe the learning that the agents
have obtained.

We have tuned the model by using a variety of hyper parameter
combination in our configuration file while keeping our batch size
as 2048, hidden units in each layer as 256 and initial ELO as
1200. The table [1] contains the hyper parameter combinations.

3.3.2 SAC

1. Model description: Soft Actor Critic(SAC) is an off-policy model-free
reinforcement learning algorithm. This RL algorithm was developed
jointly by UC Berkeley and Google and was introduced in the year
2018 [33]. It is considered one of the most efficient algorithm to be
used in real-world robotics.

The biggest feature of SAC is that it uses a modified RL objective
function. Instead of only seeking to maximize the lifetime rewards,
SAC seeks to also maximize the entropy of the policy. A high entropy
in our policy explicitly encourages exploration, encourages the policy
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to assign equal probabilities to actions that have same or nearly equal
Q-values, and also ensures that it does not collapse into repeatedly
selecting a particular action that could exploit some inconsistency in
the approximated Q function. SAC overcomes the brittleness problem
by encouraging the policy network to explore and not assign a very
high probability to any one part of the range of actions.

Figure 5: Soft Actor-Critic Algorithm[26]

2. Training:

(a) The training is carried out by setting the behavior type of agents
to ”Default” in Unity so that no external/human interaction is
required to play the game. We used the mlagents-learn package
to execute the configuration file which contains the hyper param-
eters specific to each model. Each time a configuration file is
called a new model is trained and gets saved in the local sys-
tem. Later, the trained model can be embedded into Unity as
the model type in order to observe the learning that the agents
have obtained.

We have tuned the model by using a variety of hyper parameter
combination in our configuration file while keeping our hidden
units in each layer as 256, learning rate schedule as ’constant’ and
initial ELO as 1200. The table [2] contains the hyper parameter
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Buffer size Batch size Learn Rate init steps Bounce Layer Steps Final ELO

500000 128 0.0003 0 1 2 8M 2352

50000 128 0.01 0 1 2 2M 1272

500000 128 0.003 0 1 2 3.6M 1540

1000000 1024 0.0003 1000 1 2 4M 2002

500000 512 0.0003 1000 1 2 3M 1953

500000 512 0.0003 1000 1 2 10M 2130

1000000 1024 0.0003 1000 1 3 3.9M 1915

1000000 1024 0.0003 1000 1 3 0.7M 1748

500000 512 0.003 0 0.9 3 1.98M 2005

500000 512 0.0003 0 0.9 2 6.8M 1940

Table 2: SAC Hyper parameter Combination

combinations.

3.3.3 MA-POCA

Model description:

1. MultiAgent POsthumous Credit Assignment[31] is a novel multi-agent
trainer that trains a centralized critic, a neural network that acts as a
”coach” for a whole group of agents. Rewards can be given to the team
as a whole, and the agents will learn the best ways to contribute to
achieving that reward. Agents can also be given rewards individually,
and the team will work together to help the individual achieve those
goals.

Additionally in MA-POCA agents can be added or removed from the
group during an episode, such as when agents spawn or die in a game.
If agents are removed mid-episode, they will still learn whether their
actions contributed to the team winning later. This enables the agents
to take group-beneficial actions even if it results in them being removed
from the game. MA-POCA can also be combined with self-play to
train teams of agents to play against each other

2. Training:

(a) The training is carried out by setting the behavior type of agents
to ”Default” in Unity so that no external/human interaction is
required to play the game. We used the mlagents-learn package
to execute the configuration file which contains the hyper param-
eters specific to each model. Each time a configuration file is
called a new model is trained and gets saved in the local sys-
tem. Later, the trained model can be embedded into Unity as

15



Buffer size Batch size Learn Rate Hidden Units Layers Swap Steps Final ELO

20480 2048 0.0003 512 2 1000(A)/4000(B) 1212

20480 2048 0.003 512 2 1000(A)/4000(B) 1270

Table 3: MA-POCA Hyper parameter Combination

the model type in order to observe the learning that the agents
have obtained.

We have tuned the model by using a variety of hyper parameter
combination in our configuration file while keeping our hidden
units in each layer as 256, learning rate schedule as ’constant’ and
initial ELO as 1200. The table [3] contains the hyper parameter
combinations.

3.3.4 DQN

1. Model Description : DQN is an off-policy, value-based, model-free RL
algorithm. This algorithm was introduced by DeepMind Technologies
in the year 2013 [34]. The algorithm was modified in the 2015.

A Deep Q-Network approximates a state-value function in a Q-Learning
framework with a neural network. In the Atari Games case, they take
in several frames of the game as an input and output state values for
each action as an output.

It is usually used in conjunction with Experience Replay, for storing
the episode steps in memory for off-policy learning, where samples
are drawn from the replay memory at random. Additionally, the Q-
Network is usually optimized towards a frozen target network that is
periodically updated with the latest weights every steps. The latter
makes training more stable by preventing short-term oscillations from
a moving target. The former tackles autocorrelation that would occur
from on-line learning, and having a replay memory makes the problem
more like a supervised learning problem.

DQN overcomes unstable learning by mainly 2 techniques.

• Experience Replay

• Target Network

3.3.5 DDPG

1. Model Description : Deep Deterministic Policy Gradient (DDPG) is
an algorithm which concurrently learns a Q-function and a policy. It
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Figure 6: DQN Algorithm[34]

uses off-policy data and the Bellman equation to learn the Q-function,
and uses the Q-function to learn the policy.

This approach is closely connected to Q-learning, and is motivated the
same way: if you know the optimal action-value function Q∗(s, a), then
in any given state, the optimal action a∗(s) can be found by solving

a∗(s) = arg max
a

Q∗(s, a)

DDPG interleaves learning an approximator to Q∗(s, a) with learning
an approximator to a∗(s), and it does so in a way which is specifically
adapted for environments with continuous action spaces.

3.3.6 Curriculum Learning

1. Model description: Curriculum learning is a learning agenda to pro-
gressively learn from simple to hard circumstances. The idea to imi-
tate human’s learning progress under curriculum could be traced back
to as early as 1993, when Jeffery Elman proposed a strategy to be-
gin trainig neural networks with a restricted set of simple data and
graduate expand to complex training samples.

For our table tennis game used the following learning curricula:
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(a) Reward reduction: We gradually reduce the importance given to
merely hitting the ball and instead encourage the agents to play
against the opponent’s playing style

(b) Size reduction: We gradually reduce the size of the playing bat
in order to teach agents to hit the ball with increasing levels of
movement in the legal play space

2. Training:

(a) We train the agent with initial high reward values assigned for
hitting the ball, regardless of whether the move made was a foul,
and initial low reward values assigned for scoring against the op-
ponent. But as the agent continues to move through lessons, we
progressively reduce the reward value assigned for hitting the ball
and increase the reward value set for scoring against the oppo-
nent in order to teach the agent to play legal moves with a higher
scoring probability. We used progress, represented by the ratio of
current steps to maximum steps, as the measure to shift through
lessons in our curricula.

(b) We train the agent by giving it an easy level of initial play, with
limited movement required to hit the ball, by setting the initial
bat size to a large value. We progressively increase the difficulty
through the sequence of lessons, by reducing the bat size (in the
z and y axis in Unity) until it reaches the pre-established normal
bat size value in the final lesson. This is done in order to teach
the agent to increase its range of motion in order to hit the ball.
We used progress, represented by the ratio of current steps to
maximum steps, as the measure to shift through lessons in our
curricula.

3.3.7 Single Agent

From the sections before, we have seen that the applying RL methods in
a competitive dual agent setting could help agents to learn play the table
tennis game. However, we found that some of the methods like PPO could
not guide the agents to play the game well. The dual agent setup also
restricted us to training the agents with the models provided by unity as we
wanted to explore how the agents perform when trained with other different
models from external frameworks like gym-library.

We are also curious if we could train a single agent, who only serves the
purpose of hitting the ball on to the other side of the court abiding Table
Tennis Rules, could learn to play the table tennis game. So we consider
the environment settings such as the initial condition of the agent, the spin
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coefficient, the constraint on the agent, models like PPO, SAC together with
reward reduction curriculum learning, and different reward policies.

The variations we experiment with are the following:

Environment

1. Agent: The agent has the same functionalities built-in as in the dual
agent setup. Since there is no opponent, the reward policies are now
only set based on how well the agent is able to hit the ball and abide
by the table tennis rules.

2. Serve Bot:In place of another agent, we now placed a serving bot that
serves the ball to the agent with different levels of difficulty depending
on the mode it is set to.

3. Reward Policy:

(a) Positive Rewards:

i. A positive reward is added to the agent whenever it is ob-
served that the ball has collided with the agent through a
trigger event, thus encouraging the bat to hit the ball.

ii. A positive reward is added to the agent whenever it is able
to hit the ball across the net. We achieved this by placing an
invisible object on top of the net to allow us to observe the
event whenever the ball passes through this object.

iii. Finally, When the agent successfully hits the ball not only
across the net but also onto the opponent’s table, an addi-
tional positive reward is added.

(b) Penalties:

i. A negative reward is added to the agent whenever it misses
the ball or

ii. hits the ball twice on its turn

iii. hits the ball twice on its own side of the table

iv. hits the ball directly onto any boundary or net.

We evaluated the single agent with the following modes of difficulties
in serves:

(a) Basic Setup: This setup is very similar to a 2D ping pong
game. In this setup, we have fixed the velocity and height from
which the ball is served. The ball position on the X and Z axis is
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randomized. Hence the only challenge that the agent faces is to
move towards the ball and be able to hit it.

(b) Randomized velocity: In this mode, the agent is challenged
with the ball being served with different values for velocities from
randomized X, Y, Z positions. The agent has to learn to respond
accordingly.

(c) Randomized Spin: In this setup, we have added angular ve-
locity and torque to the ball as it is served from the serve bot.
The angular velocity and the torque is randomized for every time
the serve bot serves the ball. The inclusion of angular velocity
and torque results in the ball moving in different directions after
bouncing on the table. By using randomized spin we were able to
test whether our agent was able to hit the ball for different spins.

Training: The training is carried out by setting the behavior of the single
agent to “Default” in Unity so that no external action is required to play the
game. The serve bot is here considered as the other agent for our training
purpose. The episode is reset every time an agent scores or makes a foul
move. We have used the ml agents learn package to execute the configuration
file which contains the hyperparameters specific to each model. Using the
basic setup, randomized velocity, and randomized spin we have tested the
single-agent performance using different models. We have used SAC, PPO,
and Curriculum learning models. Each time a configuration file is called a
new model is trained and gets saved in the local system. Later the trained
model can be embedded into Unity single agent to observe the performance
of the agent.

The models we use includes: SAC, PPO and curriculum learning. We have
tuned the model by using a variety of hyper parameter combination in our
configuration file while keeping our hidden units in each layer as 256, learning
rate schedule as ’constant’. The table [4] contains the hyper parameter
combinations.
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Difficulty Level Model Velocity Buffer size Learn Rate Steps Reward

Fixed Velocity PPO Fixed 500000 0.0003 700k 0.8

Fixed Velocity SAC Fixed 500000 0.0003 800k 1

Fixed Velocity PPO Fixed 500000 0.003 1M 0.53

Fixed Velocity SAC Fixed 500000 0.003 1M 0.72

Randomized Velocity SAC Random 500000 0.0003 6M 0.8

Randomized Velocity SAC Random 500000 0.0003 2.5M 0.4

Randomized Velocity SAC Random 500000 0.003 3M 0.8(Crashed)

Ball Spin SAC Fixed 500000 0.0003 8M 0.9

Ball Spin SAC Fixed 500000 0.0003 4M 0.8(Crashed)

Curriculum Reward SAC Fixed 500000 0.0003 9M 0.84

Table 4: Single-Agent Hyper parameter Combination

Particularly, since the curriculum learning model over reward policy has
shown significant improvements, we trained our single-agent setup with cur-
riculum learning as well. The initial lesson is set with high rewards set for
the agent just hitting the ball. As the agent learns to hit the ball over a set
number of episodes(threshold value), the next lesson is now set with higher
rewards for the agent hitting the ball across the net and the reward for sim-
ply hitting the ball is reduced. As the agent progresses into the final lesson,
high rewards are set for when the agent hits the ball onto the opponent’s
court and the remaining rewards are set to lower values. Thus, gradually
encouraging the agent to finally learn to play according to table tennis rules.
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3.4 Results and Analysis

3.4.1 Results with different RL methods

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: PPO training Observation: Self Play/ELO graphs with the hyper parameter combination:(a)
High Buffer Size of 2048000, low Learning Rate of 0.0003, (b) Low Buffer Size of 20480, high Learning Rate of
0.01, epochs of 3, (c) Low Buffer Size of 20480, high Learning Rate of 0.01, epochs of 500, 10, 1000. 100. SAC
training Observation: Self Play/ELO graphs with the hyper parameter combination:(d) Medium Batch Size
of 512, low Learning Rate of 0.0003, buffer initial steps of 1000,ball bounce of 1 with 2 layers (e) Medium Batch
Size of 512, low Learning Rate of 0.0003, buffer initial steps of 0,ball bounce of 0.9 with 3 layers (f) Low Batch
Size of 128, high Learning Rate varied between 0.01, 0.0003, 0.003, buffer initial steps of 0 with 2 layers (g) High
batch Size of 20480, low Learning Rate of 0.0003,buffer initial steps of 1000 experimented with 2 and 3 layers
POCA training Observation: Self Play/ELO graphs with the hyper parameter combination: (h)High Batch
Size of 2048, low Learning Rate of 0.0003, swap steps of 1000 for Agent A and 4000 for Agent B with 2 neural
layers (i)High Batch Size of 2048, high Learning Rate of 0.003, swap steps of 1000 for Agent A and 4000 for
Agent B with 2 neural layers

Figure above shows the training result with different methods like PPO,
SAC, MA-POCA, etc. The x-axis is step, and y-axis is ELO. In self play as
we know ELO is the most important factor that dominates the performance
of each model. In our case the SAC model reaches the maximum ELO of
2352 after training for 8M steps and continues to grow after. We have used
a very low learning rate of 0.0003 so that the model can learn slowly but
efficiently over a longer period of time. In our experiments we have trained
multiple SAC, PPO and MA-POCA models while varying the parameters
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and achieved the highest performance on the SAC model having a batch size
of 128, learning rate of 0.0003, buffer initial steps of 0, ball bounce of 1 and
2 neural net layers, running for 8M steps.

3.4.2 Results with curriculum learning

Figure 8: Training result with reward reduction curriculum, left:
hyper-parameters, right: Elo-steps graph

We can see from the above figure that with the reward reduction, the agent
is able to progressively learn and reach a high elo compared with standard
training procedure.

Figure 9: Training result with bat size curriculum, left: hyper-
parameters, right: Elo-steps graph
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We can see from the above figure that the agent is able to its performance,
but is as not stable and effective compared with reward reduction.

3.4.3 Single Agent Results

Figure 10: Single Agent Training result with different settings, a)
Fixed velocity, lines represent: PPO, SAC b) Random velocity, lines rep-
resent: Different hyper-parameter combinations of SAC c) Ball with spin
reward. lines represent: Different hyper-parameter combinations of SAC d)
Curriculum learning : Reward Reduction

Figure above shows the training result with different methods like PPO,
SAC, Curriculum Learning for the single agent training. The x-axis is step,
and y-axis is Cumulative Reward. In case of a single agent,as we know
cumulative reward(and not ELO) is the most important factor that dom-
inates the performance of each model. In our case the (a) Fixed Velocity
model reaches the maximum cumulative reward of 1 in case of the SAC
model 0.82 in case of the PPO model.This means that our final model is al-
most always able to successfully hit the served ball (b) Randomized Velocity
model reaches the maximum cumulative reward of 0.8 after getting trained
for 6M steps,the other two models crashed upon reaching 0.4 & 0.8 respec-
tively. We can say that the agent is capable of efficiently hitting the ball
coming at different velocities (c) Ball with Spin reward model reaches the
maximum cumulative reward of 0.9 after getting trained for 8M, the other
models displayed undesirable results at 4M steps. This explains that our
agent is capable of recognizing the spin in the ball is able to hit it success-
fully most of the times.(d) Curriculum Learning: Reward reduction model
reaches the maximum cumulative reward of 0.84 after getting trained for
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9M steps.On account of being trained under Curriculum learning the agent
is able to serve more powerful returns. In our experiments we have trained
multiple SAC, PPO models with increased difficulty for the agent to hit the
ball while varying the parameters and achieved the highest performance on
the Curriculum Learning trained model.

3.5 Dual & Single Agent

For Dual Agent, our model performance in terms of ELO has shown us that
SAC is clearly the best performing model that outperforms both PPO and
POCA. By introducing curriculum learning, our SAC models have gained
desirable behaviors such as moving backwards before hitting to generate
velocity, (better at) returning low and high balls, and tracking incoming
ball before contact. Additionally, we have noticed that agents trained with
SAC are better than those trained with Curriculum Learning + SAC. This
strange behavior is caused by hardware limitations that didn’t allow us to
train more episodes using curriculum learning compared to the default SAC
model.

As for Single Agent, our models have performed well with added difficulties
(randomized serve speed, spin, and serve landing location) while curriculum
learning has helped agents come up with more powerful returns. With these
three variations tested, the Single Agents were able to maintain rallies when
playing under dual agent settings. However, we do believe that additional
setups are required to address their inability to serve given that behavior is
not trained under the Single Agent setup.

Overall, both Dual Agent and Single Agent training have produced good
models that performed well under the variety of reward/penalty, observa-
tion, and environment setup policies that we have tested.

4 Summary

In summary, we present a semester-long Ping-Pong game project built with
inspirations of previous iterations of ml-agents. Our efforts in training both
a dual-agent and a single-agent game have shown promise in delivering very
capable table-tennis agents that can serve and return similar to a human
player. Our models have produced strong performance baselines in ELO
and average rewards that should encourage future explorations.

However, this projects have several limitations. First, our game is restricted
to only x and y axis, thereby constraining the agent’s ability to learn. Sec-
ond, the lack of computational resources slowed down the training process
as each model had to be tested for different hyper parameters. After train-
ing for each hyper parameter set we had use the saved model to check the
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performance of the game using Self play.

In the future, we plan to implement a custom support for DQN, DDPG,
and other models for Unity model conversion for self-play in the game envi-
ronment. We plan to utilize additional computational resources to complete
more episodes and get better results.This will help us to test with different
models and hyper parameters to get the best model. We plan to imple-
ment more up to date Reinforcement learning methods, include the z axis
movement for our models and also train our agents for a doubles game.
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